

Fixed-Point Blockset Release
Notes

The “Fixed-Point Blockset 4.1.1 Release Notes” on page 1-1 describes the
changes introduced in the Fixed-Point Blockset 4.1.1. The following topics
are discussed in these Release Notes:

• “New Features” on page 1-2

• “Major Bug Fixes” on page 1-3

Note Fixed-Point Blockset 4.1.1 requires R13SP1.

If you are upgrading from a release earlier than Release 13SP1, you should
also see these sections:

• “Fixed-Point Blockset 4.1 Release Notes” on page 2-1

• “Fixed-Point Blockset 4.0.1 Release Notes” on page 3-1

• “Fixed-Point Blockset 4.0 Release Notes” on page 4-1

Printing the Release Notes
If you would like to print the Release Notes, you can link to a PDF version.

-2

i

Contents

1
Fixed-Point Blockset 4.1.1 Release Notes

New Features . 1-2
API for User-Written Fixed-Point S-Functions 1-2
Arithmetic with Non-Zero Bias Fully Supported 1-2

Major Bug Fixes . 1-3
Simulation Error for 65-Bit+ Multiplication Corrected 1-3
Lookup Table (2-D) Code Generation Bug Corrected 1-3

2
Fixed-Point Blockset 4.1 Release Notes

New Features . 2-2
Improved Treatment of Tunable Parameters 2-2
Generated Code Improved for Lookup Tables and Division . . . 2-2

Major Bug Fixes . 2-3
Plot System Dialog Signal Information Corrected 2-3
Fixed-Point Settings Interface Now Usable for Large Fonts . . 2-3

3
Fixed-Point Blockset 4.0.1 Release Notes

Major Bug Fixes . 3-2

Upgrading from an Earlier Release . 3-3
Backwards Compatibility of Tunable Parameters for Unified
Fixed-Point Blocks . 3-3

ii Contents

4
Fixed-Point Blockset 4.0 Release Notes

New Features . 4-2
Installation and Licensing . 4-2
Unified Simulink and Fixed-Point Blockset Blocks 4-3
Global Data Type Override and Logging Modes 4-5
Shift Arithmetic Block . 4-5

Upgrading from an Earlier Release . 4-6
Replacing Obsolete Blocks . 4-6
Restoring Broken Links . 4-6
Data Type Override and Logging Parameters 4-6

1
Fixed-Point Blockset 4.1.1
Release Notes

New Features 1-2
API for User-Written Fixed-Point S-Functions 1-2
Arithmetic with Non-Zero Bias Fully Supported 1-2

Major Bug Fixes 1-3
Simulation Error for 65-Bit+ Multiplication Corrected . . . 1-3
Lookup Table (2-D) Code Generation Bug Corrected 1-3

1 Fixed-Point Blockset 4.1.1 Release Notes

1-2

New Features
This section introduces the new features and enhancements introduced in the
Fixed-Point Blockset 4.1.1 since Version 4.1.

API for User-Written Fixed-Point S-Functions
You can now write your own Simulink C S-functions that directly handle
fixed-point data types with a newly published API. For more information, refer
to “Writing Fixed-Point S-Functions” in the Fixed-Point Blockset
documentation.

Arithmetic with Non-Zero Bias Fully Supported
Code generation has been enhanced to generate bit-true fixed-point code that
supports multiplication, division, and reciprocal for signal and parameters
with non-zero bias. Previously, these cases lead to code generation errors. Code
will now be generated for these cases, and that code will make efficient use of
just C integer operations.

Major Bug Fixes

1-3

Major Bug Fixes
The Fixed-Point Blockset 4.1.1 includes several bug fixes made since Version
4.1. This section describes the particularly important Version 4.1.1 bug fixes.

If you are upgrading from a release earlier than Release 13SP1, then you
should see “Major Bug Fixes” on page 2-3 of the Fixed-Point Blockset 4.1
Release Notes.

Simulation Error for 65-Bit+ Multiplication Corrected
In prior releases, fixed-point multiplication could produce the wrong answer
under certain simulation conditions. For this error to occur, one input had to
have at least 33 bits and the other input at least 32 bits. The correct answer
had to be negative, and some additional numerical criteria had to be met. This
error could only occur in simulation; it never occurred in generated code. This
error has been fully corrected for this release.

Lookup Table (2-D) Code Generation Bug Corrected
In prior releases, code generation for the Lookup Table (2-D) block failed under
the following conditions:

• The data type of the input signal had non-zero bias or non-one slope

• The corresponding breakpoints were evenly spaced

This has been corrected.

1 Fixed-Point Blockset 4.1.1 Release Notes

1-4

2
Fixed-Point Blockset 4.1
Release Notes

New Features 2-2
Improved Treatment of Tunable Parameters 2-2
Generated Code Improved for Lookup Tables and Division . . 2-2

Major Bug Fixes 2-3
Plot System Dialog Signal Information Corrected 2-3
Fixed-Point Settings Interface Now Usable for Large Fonts . 2-3

2 Fixed-Point Blockset 4.1 Release Notes

2-2

New Features
This section summarizes the new features and enhancements introduced in the
Fixed-Point Blockset 4.1.

If you are upgrading from a release earlier than Release 13, then you should
see “New Features” on page 4-2.

Improved Treatment of Tunable Parameters
In Release 13, many Simulink and Fixed-Point Blockset blocks were unified.
The unified blocks were designed to be fully compatible with models created in
earlier releases. However, the unified rules for the treatment of tunable
parameters caused compatibility problems for some legacy fixed-point models
as discussed in “Upgrading from an Earlier Release” in Chapter 3. In this
release, these rules have been improved.

A fixed-point model created in Release 12.1 may have experienced problems
with tunable parameters when generating code with Real Time Workshop 5.0
or 5.0.1. With the current release, a model created in Release 12.1 will be able
to generate code without compatibility problems. Please note that the steps
described in Chapter 3 of these Release Notes to solve these compatibility
problems do not need to be reversed. The new rules are compatible both with
legacy fixed-point models from Release 12.1 and with models that used the
work-around described for the previous release.

Generated Code Improved for Lookup Tables and
Division
The generated code for utilities that support integer and fixed-point math have
been improved to reduce the amount of ROM required. In particular, code that
supports lookup tables and division has been improved. The generated code for
these operations has been restructured to make greater use of shared functions
and less use of inlined code.

Major Bug Fixes

2-3

Major Bug Fixes
This section summarizes the major bug fixes introduced in the Fixed-Point
Blockset 4.1.

Plot System Dialog Signal Information Corrected
The Plot System dialog is a tool that allows fixed-point simulation results to
be easily compared against equivalent floating-point simulation results. Access
this dialog by opening the Fixed-Point Settings interface from the Simulink
Tools menu, and then clicking the Show plot dialog icon. For the current
model, the dialog provides a list of signals that are logged to the workspace by
To Workspace blocks, Scope blocks, and root-level Outport blocks. Signals from
this list can be selected, and then plotted in three ways.

There are three plot buttons in the Plot System dialog. The Plot Signals button
shows the simulation results that are collected using the model's specified data
types. The Plot Doubles button shows the simulation results that are collected
when the model's specified data types are overridden at the root level by True
Doubles or Scaled Doubles. The Plot Both button shows both results
simultaneously, making it easy to compare fixed-point behavior against
idealized floating-point behavior.

In Release 13, the Plot System dialog did not always work properly. Clicking
any of the three plot buttons could plot the wrong signals or lead to incorrect
error messages. These errors have been corrected. Signals are now associated
with the correct plot buttons. In addition, the error messages have been
changed to give improved instructions on how to collect the data required by
each button.

Fixed-Point Settings Interface Now Usable for Large
Fonts
In the previous release, the Fixed-Point Settings interface was unusable if
your system setup defined large default system fonts. When trying to open the
dialog, an error would be reported and the dialog would not appear. The
creation of the dialog has now been made robust enough to handle large fonts.

2 Fixed-Point Blockset 4.1 Release Notes

2-4

3
Fixed-Point Blockset 4.0.1
Release Notes

Major Bug Fixes 3-2

Upgrading from an Earlier Release 3-3
Backwards Compatibility of Tunable Parameters for

Unified Fixed-Point Blocks 3-3

3 Fixed-Point Blockset 4.0.1 Release Notes

3-2

Major Bug Fixes
The Fixed-Point Blockset 4.0.1 includes several important bug fixes made since
Version 4.0.

If you are viewing these Release Notes in PDF form, please refer to the HTML
form of the Release Notes, using either the Help browser or the MathWorks
Web site and use the link provided.

Upgrading from an Earlier Release

3-3

Upgrading from an Earlier Release
Below is an upgrade issue involved in upgrading from the Fixed-Point Blockset
4.0 to Version 4.0.1.

If you are upgrading from a version earlier than 4.0, then you should see
“Upgrading from an Earlier Release” on page 4-6 in the Fixed-Point Blockset
4.0 Release Notes.

Backwards Compatibility of Tunable Parameters for
Unified Fixed-Point Blocks
Unified fixed-point blocks with tunable parameters have compatibility
problems under certain conditions in Release 13. The problem arises only if a
tunable parameter is mapped to a built-in integer or single data type. When
tunable parameters are mapped to built-in integers or single, the code
generated by Real Time Workshop will be different for unified blocks than it
was for Fixed-Point Blockset blocks in prior releases. There are no
compatibility problems if a tunable parameter maps to a nonbuilt-in data type,
such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name
of a MATLAB variable in a block’s dialog. This variable can be either a plain
MATLAB variable or a Simulink parameter object. In either case, a numerical
value will be defined for this tunable parameter by doing an assignment in
MATLAB. MATLAB supports several numerical data types including the eight
Simulink built-in numerical data types: double, single, int8, uint8, int16,
uint16, int32, and uint32. One of these eight data types can be used when a
value is defined for a MATLAB variable. The effect of the data type of the
MATLAB variable is significantly different depending on how the tunable
parameter is used in Simulink.

For Simulink built-in blocks, the legacy rule is to fully respect the data type
used for the value of a MATLAB variable. Whatever data type is used in
MATLAB when assigning a value to a variable is also be used when declaring
that parameter in code generated by Real Time Workshop. The use of that
parameter by a block may require the value to be represented using a different
data type. If so, additional code is generated to convert the parameter every
time it is used by the block. To get the most efficient code for a given block, the
value of the MATLAB variable should use the same data type as is needed by
the block.

3 Fixed-Point Blockset 4.0.1 Release Notes

3-4

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type
information from the MATLAB variable used for the tunable parameter. A
fundamental reason for this is that MATLAB does not have native support for
fixed-point data types and scaling, so the Simulink built-in legacy rule could
not be directly extended to the general fixed-point case. Many fixed-point
blocks automatically determine the data type and scaling for parameters based
on what leads to the most efficient implementation of a given block. However,
certain blocks such as Constant, as well as blocks that use tunable parameters
in multiplication, do not imply a unique best choice for the data type and
scaling of the parameter. These blocks have provided separate parameters on
their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset blocks
were unified. The Saturation block is an example of a unified block. The
Saturation block appears in both the Simulink Library and in the Fixed-Point
Blockset Library, but regardless of where it appears it has identical behavior.
This identical unified behavior includes the treatment of tunable parameters.
The dissimilarity of the legacy rules for tunable parameters has lead to a
shortcoming in the unified blocks. Unified blocks obey the Simulink legacy rule
sometimes and the Fixed-Point Blockset legacy rule at other times. If the block
is using the parameter with built-in Simulink data types, then the Simulink
legacy rule applies. If the block is using the parameter with nonbuilt-in data
types, such as scaled fixed-point data types, then the Fixed-Point Blockset
legacy rule applies. This gives full backwards compatibility with one important
exception.

The backwards compatibility issue arises when a model created prior to R13
uses a Fixed-Point Blockset block with a tunable parameter, and the data type
used by the block happens to be a built-in data type. If the block is unified, it
will now handle the parameter using the Simulink legacy rule rather than the
Fixed-Point Blockset legacy rule. This can have a significant impact. For
example, suppose the tunable parameter is used in a Saturation block and the
data type of the input signal is a built-in int16. In prior releases, the
Fixed-Point Blockset block would have declared the parameter as an int16.
For legacy fixed-point models, the MATLAB variables used for tunable
parameters invariably gave their value using floating-point double. The
unified Saturation block would now declare the tunable parameter in the
generated code as double. This has several negatives. The variable takes up six
more bytes of memory as a double than as an int16. The code for the
Saturation block now includes conversions from double to int16 that execute
every time the block executes. This increases code size and slows down

Upgrading from an Earlier Release

3-5

execution. If the design was intended for use on a fixed-point processor, the use
of floating-point variables and floating-point conversion code is likely to be
unacceptable. It should be noted that the numerical behavior of the blocks is
not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved. The
solution involves understanding that the Simulink legacy rule is being applied.
The Simulink legacy rule preserves the data type used when assigning the
value to the MATLAB variable. The problem is that an undesired data type will
be used in the generated code. To solve this, you should change the way you
assign the value of the tunable parameter. Determine what data type is desired
in the generated code, then use an explicit type cast when assigning the value
in MATLAB. For example, if int16 is desired in the generated code and the
initial value is 3, then assign the value in MATLAB as int16(3). The
generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying
which blocks are affected. In most cases, the treatment of the parameter will
involve a downcast from double to a smaller data type. On the Diagnostics tab
of the Simulation Parameters dialog is a line item called Parameter
downcast. Setting this item to Warning or None will help identify the blocks
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks:
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors
when the value of a tunable parameter was specified using integer data types.
This was a false error and has been removed. Using an explicit type cast when
assigning a value to the MATLAB variable now solves the issue of generating
code with the desired data types.

3 Fixed-Point Blockset 4.0.1 Release Notes

3-6

4
Fixed-Point Blockset 4.0
Release Notes

New Features 4-2
Installation and Licensing 4-2
Unified Simulink and Fixed-Point Blockset Blocks 4-3
Global Data Type Override and Logging Modes 4-5
Shift Arithmetic Block 4-5

Upgrading from an Earlier Release 4-6
Replacing Obsolete Blocks 4-6
Restoring Broken Links 4-6
Data Type Override and Logging Parameters 4-6

4 Fixed-Point Blockset 4.0 Release Notes

4-2

New Features
This section summarizes the new features and enhancements introduced in the
Fixed-Point Blockset 4.0.

If you are upgrading from a release earlier than Release 12.1, then you should
see “New Features” on page 5-2.

This section is organized into the following subsections:

• “Installation and Licensing” on page 4-2

• “Unified Simulink and Fixed-Point Blockset Blocks” on page 4-3

• “Global Data Type Override and Logging Modes” on page 4-5

• “Shift Arithmetic Block” on page 4-5

Installation and Licensing
To support the sharing of models in a large organization, Version 4.0 of the
Fixed-Point Blockset is automatically installed whenever Simulink is
installed. You can configure models to either take full advantage of all
fixed-point features, or to run without a Fixed-Point Blockset license.
Therefore all Simulink users in your organization can run and work on the
same model, regardless of whether they have a Fixed-Point Blockset license.

You must have a Fixed-Point Blockset license to run a model if it is configured
to log minimums, maximums, or overflows. You control logging with the
system-level setting Logging mode. If you turn logging off at the top-level
system in a model, then no data is logged for any block in any subsystem of the
model, and a Fixed-Point Blockset license is not required. You also need a
Fixed-Point Blockset license to run a model that uses any nonbuilt-in,
fixed-point data types. However, you can use the system-level setting Data
type override to force blocks to use doubles or singles instead of fixed-point
data types. Therefore, by turning the Data type override parameter on and
the Logging mode parameter off at the top level of a model, a Simulink user
without a Fixed-Point Blockset license can run a model with fixed-point
enabled blocks. See “Global Data Type Override and Logging Modes” on
page 4-5 for more information on these settings.

If you have a Fixed-Point Blockset license, you can run bit-true simulations
with your models that contain fixed-point enabled blocks. If a Fixed-Point
Blockset license is not available or desired, you can turn logging off and data

New Features

4-3

type override on at the top level of your model and perform idealized floating
point-based simulations.

If you have both a Fixed-Point Blockset license and a Real-Time Workshop
license, you can generate bit-true integer code from your models with
fixed-point enabled blocks. If you do not have a Fixed-Point Blockset license but
you do have a Real-Time Workshop license, you can generate idealized
floating-point code from your models with fixed-point enabled blocks.

Unified Simulink and Fixed-Point Blockset Blocks
Many core Simulink and Fixed-Point Blockset blocks with similar functions
have been unified in this release. For example, the Sum block in the Simulink
Math Operations library and the Sum block in the Fixed-Point Blockset Math
library are now the same block. All the functionality from each original block
has been maintained in unifying these blocks. Compatibility with fixed-point
data types and/or specific fixed-point features are now available with all of
these blocks, whether the blocks used are from Simulink or from the
Fixed-Point Blockset. You do not need to make any changes to your earlier
models as a result of this improvement. You can now use any of the unified
blocks with either built-in data types or fixed-point data types, which
eliminates the need to replace blocks in your models when you want to use
different data types. This change does not require Simulink users to have a
Fixed-Point Blockset license. Refer to “Installation and Licensing” on page 4-2
above for more information.

Fixed-Point Blockset blocks that have been unified no longer have an “F” on
their block icon. However, not all Fixed-Point Blockset blocks that have
counterparts in Simulink libraries have been unified. You can still use the
fixpt_convert function to replace nonunified Simulink blocks with their
Fixed-Point Blockset counterparts in your models.

Nonunified Fixed-Point Blockset blocks have an advantage over their Simulink
counterparts in that they can handle more data types. As discussed above, you
can easily switch them between fixed-point data types and singles or doubles
using the global data type override setting. However, you may still want to use
the Simulink counterparts of nonunified Fixed-Point Blockset blocks in some
cases, because they support faster simulation times for the data types they
handle.

4 Fixed-Point Blockset 4.0 Release Notes

4-4

The following table lists the unified blocks in this release, and the Simulink
and Fixed-Point Blockset libraries in which they are found.

Block Simulink Library Fixed-Point Blockset Library

Abs Math Operations Math

Constant Sources Sources

Data Store Memory Signal Routing N/A

Data Store Read Signal Routing N/A

Data Store Write Signal Routing N/A

Gain Math Operations Math

Inport Ports & Subsystems, Sources N/A

Logical Operator Math Operations Logic & Comparison

Look-Up Table Look-Up Tables LookUp

Look-Up Table (2-D) Look-Up Tables LookUp

Manual Switch Signal Routing N/A

Memory Discrete N/A

Merge Signal Routing N/A

Multi-Port Switch Signal Routing Select

Outport Ports & Subsystems, Sinks N/A

Product Math Operations Math

Rate Transition Signal Attributes N/A

Relational Operator Math Operations Logic & Comparison

Relay Discontinuities Nonlinear

Saturation Discontinuities Nonlinear

Sign Math Operations Nonlinear

New Features

4-5

Global Data Type Override and Logging Modes
You can now set data type override and logging modes for systems or
subsystems in the Fixed-Point Blockset Interface. The Override data type(s)
with doubles and Log minimums and maximums check boxes have been
removed from the mask of every Fixed-Point Blockset block. See “Data Type
Override and Logging Parameters” on page 4-6.

Shift Arithmetic Block
The Fixed-Point Blockset now includes the Shift Arithmetic block in the Bits
library. The Shift Arithmetic block shifts the bits or binary point of a signal, or
both.

Signal Specification Signal Attributes N/A

Slider Gain Math Operations N/A

Sum Math Operations Math

Switch Signal Routing Select

Unit Delay Discrete Delays & Holds

Zero-Order Hold Discrete Delays & Holds

Block Simulink Library Fixed-Point Blockset Library

4 Fixed-Point Blockset 4.0 Release Notes

4-6

Upgrading from an Earlier Release
This section describes the upgrade issues involved in moving from the
Fixed-Point Blockset 3.1 to Version 4.0.

Replacing Obsolete Blocks
If you are using blocks from previous versions of the Fixed-Point Blockset, your
model may contain obsolete blocks. The fpupdate function can be used to
update obsolete blocks from previous Fixed-Point Blockset releases to current
Fixed-Point Blockset blocks.

fpupdate('model') replaces all obsolete Fixed-Point Blockset blocks
contained in the model with current blocks. The model must be opened prior to
calling fpupdate.

fpupdate('model',blkprompt) prompts you for replacement of obsolete
blocks. If blkprompt is 0 (the default), you will not be prompted. If blkprompt
is 1, you will have three options:

• ‘y’ (default) replaces the block

• ‘n’ does not replace the block

• ‘a’ replaces all blocks without further prompting

Restoring Broken Links
Breaking library links to Fixed-Point Blockset blocks will almost certainly
produce an error when you attempt to run the model. If broken links exist, you
will likely uncover them when upgrading to the latest release of the
Fixed-Point Blockset. The fixpt_restore_links command can be used to
restore links for Fixed-Point Blockset blocks.

Data Type Override and Logging Parameters
The Override data type(s) with doubles and Log minimums and maximums
check boxes have been removed from the mask of every Fixed-Point Blockset
block. You can now set these parameters on the system or subsystem level.

When you upgrade to Version 4.0, all doubles override and logging information
is cleared from your models. You can reset these controls in the Fixed-Point
Blockset Interface for any system or subsystem. Access the Fixed-Point

Upgrading from an Earlier Release

4-7

Blockset Interface from the Simulink Tools menu, or by typing
fxptdlg('modelname') at the MATLAB command line.

If you have been getting or setting the block parameters DblOver or dolog in
your M-code, you must now use the system parameters DataTypeOverride and
MinMaxOverflowLogging.

4 Fixed-Point Blockset 4.0 Release Notes

4-8

	Fixed-Point Blockset 4.1.1 Release Notes
	New Features
	API for User-Written Fixed-Point S-Functions
	Arithmetic with Non-Zero Bias Fully Supported

	Major Bug Fixes
	Simulation Error for 65-Bit+ Multiplication Corrected
	Lookup Table (2-D) Code Generation Bug Corrected

	Fixed-Point Blockset 4.1 Release Notes
	New Features
	Improved Treatment of Tunable Parameters
	Generated Code Improved for Lookup Tables and Division

	Major Bug Fixes
	Plot System Dialog Signal Information Corrected
	Fixed-Point Settings Interface Now Usable for Large Fonts

	Fixed-Point Blockset 4.0.1 Release Notes
	Major Bug Fixes
	Upgrading from an Earlier Release
	Backwards Compatibility of Tunable Parameters for Unified Fixed-Point Blocks

	Fixed-Point Blockset 4.0 Release Notes
	New Features
	Installation and Licensing
	Unified Simulink and Fixed-Point Blockset Blocks
	Global Data Type Override and Logging Modes
	Shift Arithmetic Block

	Upgrading from an Earlier Release
	Replacing Obsolete Blocks
	Restoring Broken Links
	Data Type Override and Logging Parameters

